
RealDB: Low-Overhead
Database for Time-Sequenced
Data Streams in Embedded
Systems

MS Project Defense

Jason Winnebeck

October 5, 2010

Coming Up

� Problem

� Implementation

� Results

� Lessons Learned and Future Work

Problem

� Storage of high-
frequency, ordered time
series data from multiple
sources

� Embedded environment
� Low-powered hardware

(sub Ghz ARM or x86)

� Limited Space (0.5 to
2GB, solid state)

� No knowledgeable
operator at deployed
location

� Unreliable power source

Hypothesis

� Building a data storage solution specific to
data streams can substantially improve
performance over a “traditional” (relational)
database engine for the embedded
environment, while maintaining scalable
performance in writing and recovery

� O(1) recovery time for a specific configuration

� O(n) size and time to write records

� Ability to maintain a fixed size

Application Assumptions and
Trade-offs

� Data is collected and written in order

� Database engine is single thread and
client

� Truncation of records just written to
the stream before a fault is
acceptable for fast, unattended
recovery

System Assumptions

� The operating system performs writes to
the disk in the same order as RealDB
performs them when operated in
synchronous mode

� When the system has a power fault, blocks
(bounded by some finite, known size)
previously written are unmodified

� The data contained in the block being
written to during a power fault is undefined
on next start

Goals

� Unattended operation and availability; recovery runs
within a fixed time for a given configuration

� Durability: A failure does not cause loss of data
written before a successful flush command

� RealDB is scalable to arbitrarily large data sets.

� Insert a single point (including delete): O(1)

� Lookup single point: O(log n)

� Retrieve range: O(n)

� Minimize write cycles to keep SSD wear to a minimum

� Compact database size

� Minimize CPU utilization

Relational Database Solutions

� Stream data can be recorded in a SQL
table as timestamped rows

� RealDB will be compared against:

� MySQL InnoDB (5.1.46): transactional
server

� MySQL MyISAM: non-transactional
server

� Apache Derby (10.5.3.0_1):
transactional embedded

Coming Up

� Problem

� Implementation

� Results

� Lessons Learned and Future Work

File Format Design

� Fixed size file with blocks of a configurable
size, which must be a multiple of physical
block size

� Laid out in sections:
� File Header

� Metadata Section – describes streams

� Block Pool – manages block allocation and
transactions

� Data Index – preallocated, tracks blocks
allocated to each stream

� Data Section – contains raw stream data

Key Design Properties

� Data recorded in order eliminates a lot of indexing

� Direct, embedded API eliminates SQL interface
overhead

� Fixed file size with fixed sections minimizes allocations

� Backup blocks for transaction-free atomic changes in
individual indices; never overwrite the only copy

� Circular buffers keep modifications only at the ends:
limits backup blocks, O(1) performance

� Transaction logging only on data block allocation

� Size management: overwrite oldest data block –
bounded delete overhead

� Works on any contiguous memory range: in-memory,
pre-allocated file, or raw disk partition

RealDB Definition Language (RDL)

SET blockSize = 2048
SET fileSize = 204800
SET maxStreams = 3
SET dataBlockSize = 2

CREATE STREAM Test WITH ID 1 {
value float NULL //will use SampledAlgorithm by defa ult

}

CREATE STREAM CarSnapshots WITH ID 2 {
rpm float WITH CODEC DeadbandAlgorithm PARAMS (deadb and=50.0),
speed float WITH CODEC DeadbandAlgorithm PARAMS (dea dband=5),
passengers uint8 WITH CODEC StepAlgorithm,
driving boolean WITH CODEC StepAlgorithm

}

Coming Up

� Problem

� Implementation

� Results

� Lessons Learned and Future Work

Benchmark Metrics

� Database size (assuming no filesystem overhead). For
RealDB this measures the utilized space, since the
datafiles files are a fixed size (50MiB and 100MiB).

� DB startup and creation:

� time

� disk sectors reads/writes

� DB load and shutdown:

� time

� disk sectors read/write

� reads/writes disk milliseconds

� user and kernel mode jiffies (including those of child
processes)

Benchmark Dimensions

� Implementation

� RealDB file-based

� RealDB partition-based

� Derby

� MySQL MyISAM

� MySQL InnoDB

� Size Management (Y/N)

� Number of Records (every 1M to 9M, then 9.2M)

Note: Not all Derby / InnoDB tests run due to extremely
poor performance

Benchmark Environment

� Ubuntu GNU/Linux 9.10 (Karmic)
� kernel 2.6.31-21-generic

� Intel Core 2 2.4 GHZ E6600
� (CPU frequency scaling left on)

� 2GiB RAM
� Java 1.6: OpenJDK 6b16-1.6.1-3ubuntu3
� USB 2.0 memory card reader with a 4GB CompactFlash card

� Measured 5.7MiB/s write
� Measured 6.8MiB/s read

� MySQL 5.1.46
� Connector/J JDBC Driver 5.1.12
� JDBC parameter rewriteBatchedStatements = true

� Derby 10.5.3.0_1

Benchmark Process

� Insert rows in time order – “playback”
of the sensor data

� For SQL:

� JDBC PreparedStatements (at start)

� Batch inserts every 1000 rows

� Size management: After each batch,
delete rows older than 10,000 seconds

Results – Creation Time

Create Time

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10

Records (millions)

S
ec

o
n

d
s

RDB File 50M

RDB File 100M

RDB Raw 50M

RDB Raw 100M

MyISAM

MyISAM (M)

InnoDB

InnoDB (M)

Derby

Results – Load Time

Load Time

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6 7 8 9 10

Records (millions)

S
ec

o
n

d
s

RDB File 50M

RDB File 100M

RDB Raw 50M

RDB Raw 100M

MyISAM

MyISAM (M)

InnoDB

InnoDB (M)

Results – Load Time

Load Time

0

50

100

150

200

250

300

350

400

450

500

RDB File
50M

RDB File
100M

RDB
Raw
50M

RDB
Raw

100M

M yISAM M yISAM
(M)

InnoDB InnoDB
(M)

Derby

5M

9.2M

99.4%99.3%Derby

95.7%95.5%InnoDB (M)

84.5%84.4%84.1%83.2%InnoDB

-9.2%-6.8%-15.6%-12.9%MyISAM (M)

-36.2%-26.8%-39.8%-36.6%MyISAM

9.2M Raw5M Raw9.2M File5M FileImplementation

21971 sDerby

3174 sInnoDB (M)

1589 s859 sInnoDB

9.2M Records5M RecordsImplementation

Results – Database Size

Database Size

0

100

200

300

400

500

600

700

RDB File 50M RDB File 100M RDB Raw 50M RDB Raw 100M MyISAM MyISAM (M) InnoDB InnoDB (M) Derby

B
yt

es
 (

M
il)

5M

9.2M

90.8%90.8%Derby

16.7%16.7%InnoDB (M)

79.6%80.5%79.6%80.5%InnoDB

-721.3%-727.6%-721.3%-727.6%MyISAM (M)

75.4%75.3%75.4%75.3%MyISAM

9.2M Raw5M Raw9.2M File5M FileImplementation

Results – Database Size

Database Size

0

50

100

150

200

250

300

350

400

450

500

0 1 2 3 4 5 6 7 8 9 10

Records (millions)

B
yt

es
 (

m
il)

RDB File 50M

RDB File 100M

RDB Raw 50M

RDB Raw 100M

MyISAM

MyISAM (M)

InnoDB

InnoDB (M)

Derby

Results – CPU Utilization

Loading CPU user+kernel

0

2000

4000

6000

8000

10000

12000

14000

RDB File 50M RDB File 100M RDB Raw 50M RDB Raw 100M MyISAM MyISAM (M) InnoDB InnoDB (M) Derby

T
ic

ks 5M

9.2M

99.5%99.4%Derby

99.0%98.9%InnoDB (M)

96.2%95.8%95.6%94.7%InnoDB

96.0%96.4%96.1%96.1%MyISAM (M)

94.2%94.5%93.3%93.0%MyISAM

9.2M Raw5M Raw9.2M File5M FileImplementation

Results – CPU Utilization

Loading CPU user+kernel

0

100

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5 6 7 8 9 10

Records (millions)

T
ic

ks

RDB File 50M

RDB File 100M

RDB Raw 50M

RDB Raw 100M

MyISAM

MyISAM (M)

InnoDB

InnoDB (M)

Derby

Results – Disk Writes

Load Writes

0

100

200

300

400

500

600

700

800

900

1000

RDB File 50M RDB File 100M RDB Raw 50M RDB Raw 100M MyISAM MyISAM (M) InnoDB InnoDB (M) Derby

S
ec

to
rs

 (
K

)

5M

9.2M

98.5%98.6%Derby

96.9%97.0%InnoDB (M)

91.4%91.4%91.7%91.6%InnoDB

-74.1%-55.0%-67.5%-49.9%MyISAM (M)

53.9%53.7%55.4%55.3%MyISAM

9.2M Raw5M Raw9.2M File5M FileImplementation

Results – Disk Writes

Load Writes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5 6 7 8 9 10

Records (millions)

S
ec

to
rs

 (
M

)

RDB File 50M

RDB File 100M

RDB Raw 50M

RDB Raw 100M

MyISAM

MyISAM (M)

InnoDB

InnoDB (M)

Derby

Results – Summary

� Total load time is reduced by 95%-96%
� Compared to the fastest reliable RDBMS implementation,

InnoDB

� Database size is reduced by 75%-81%
� compared to the smallest RDBMS, MyISAM, and 81%

compared to InnoDB, the smallest reliable RDBMS

� CPU utilization is reduced by 93%-99%
� compared to MyISAM and InnoDB

� Loading writes reduced by 54%-91%
� Without size management, versus MyISAM (54%) and InnoDB

(91%)
� Sectors written when size management is required is

inconclusive because it was not possible to replicate the same
delete methods in SQL as was used in RealDB, but MyISAM
may require about half as many writes. InnoDB requires more
writes when size management is required.

Conclusions

� RealDB achieves its goal of significantly improved
performance over the compared RDBMS implementations
for the problem of data streams.

� RealDB achieves the complexity requirements
� Bounded recovery time
� Bounded insert
� Linear load (disk and CPU)

� Other advantages versus traditional RDBMS
� SQL cannot guarantee DB size limit
� Does not require file system (which can fail)

� Disadvantages
� Fixed DB structure/size impacts upgrades
� Forced flush can leave unused “slack space” in data blocks

� Would probably need to complement an embedded SQL,
but RealDB allows it to be light-weight

Lessons Learned

� Transactions were needed, which added
delay and complexity

� Data storage and data compression too
much for one project; choice was to focus
on the former

� Version control comments, notes, code
comments critical when working
sporadically

� There must be some limit to redesign or
shift directions on new knowledge; at some
point, document and continue

Future Work

� Modify DB after creation

� Multiple outstanding transactions

� Fix “slack space” on flush

� Investigate why RealDB takes more time
but uses less CPU and writes (effective
resource use)

� Memory usage and read metrics

� Improvements to selecting block to delete

� Compare to other RDBMS like SQLite

� Compare to non-RDBMS alternatives

Further Details

� The slides following are further details
on topics not covered entirely in the
previous slides

Data Streams

� Sample is a fixed-size, user-specified
structure with named fields
� Integers (8-64 bit)

� Real numbers (32-64 bit IEEE-754)

� Booleans

� Samples have 64-bit timestamps in
ascending order

� Can be in either a known or unknown
(discontinuity) state

Stream Codecs

� Allows compression and
reconstruction of stream data on a
per-element basis. User-specified or
built-in:

� SampledAlgorithm: every point

� StepAlgorithm: only on any change

� DeadbandAlgorithm: only if it changes
enough

Data Gathering

� Gathering of all items, or based on start
and end times

� Iterate over the records (after codec)

� Iterate over stream time intervals (codec
reconstruction), allowing:
� Start/end time and timespan

� Average

� Minimum

� Maximum

� Resampling (value at time X)

� Integral

Metadata Section

� Data block size, in file blocks

� Maximum streams (data index section size is
calculated from this)

� Stream information:

� User ID (integer)

� Name

� Ordered list of record elements
� Name

� Codec algorithm used (such as SampledAlgorithm)

� Data type

� Whether or not the element is required in the record
(nullable/optional)

Index Section

� Data index for a stream is a fixed-size
circular buffer of data block indices

� Index block fields (one file block):

� Time of first record in all referenced data
blocks

� Time of last record

� Array of data block indices

� Checksum and modification sequence
number

Transactions

� Only covers data block allocation and
transfer from stream A to B (delete+add)

� Transaction entry types:

� Change in unallocated block pointer

� Allocation of a free block (leftover from
recovered DB)

� Remove a block from stream

� Add block to stream

� Transaction log is fixed size circular buffer,
preallocated

Transaction Recovery

� Each transaction records the “current
state” and the change to make

� Recovery process:

� Iterate over each transaction

� If current state equals that described,
make the change

� For removed blocks, add to an in-
memory list of free blocks to reallocate

Transaction Example

� Steps for transferring a block when
database is full:

Nothing; transaction completedAdd the block to the destination stream's index

Add block is replayedEnd the transaction with a Add Block entry

Block added to (memory) free listWrite the data block

Block added to (memory) free list
Remove the first block from the source
stream's index

Remove Block is replayed, block
placed back on free listStart a transaction with a Remove Block entry

Nothing; no disk modifications yet
Find the index whose first block is the oldest
data block (source index)

What happens if system crashes
immediately afterAction

RealDB Browser

RealDB Proof-of-Concept

Benchmark RDL
SET blockSize = 4096
SET fileSize = 52428800 #or 104857600
SET maxStreams = 8
SET dataBlockSize = 4

CREATE STREAM RPM WITH ID 190 {
value float

}
CREATE STREAM FuelRate WITH ID 183 {

value float
}
CREATE STREAM AccelPedalPosition WITH ID 91 {

value float
}
CREATE STREAM BatteryVolts WITH ID 1682 {

value float
}
CREATE STREAM FuelEcon WITH ID 184 {

value float
}
CREATE STREAM Speed WITH ID 841 {

value float
}
CREATE STREAM VehicleStatus WITH ID 1 {

collecting boolean WITH CODEC StepAlgorithm
}
CREATE STREAM HardAccelEvent WITH ID 2 {

active boolean WITH CODEC StepAlgorithm
}

Benchmark SQL – MySQL MyISAM
DROP DATABASE IF EXISTS `realdb_benchmark`;

CREATE DATABASE `realdb_benchmark`;

CREATE TABLE `realdb_benchmark`.`FloatData` (
`streamId` INTEGER UNSIGNED NOT NULL,
`time` BIGINT UNSIGNED NOT NULL,
`value` FLOAT NOT NULL,
`discontinuity` BIT NOT NULL,
PRIMARY KEY (`streamId`, `time`),
INDEX `Index_Time`(`time`)

)
ENGINE = MyISAM;

CREATE TABLE `realdb_benchmark`.`BooleanData` (
`streamId` INTEGER UNSIGNED NOT NULL,
`time` BIGINT UNSIGNED NOT NULL,
`value` BIT NOT NULL,
`discontinuity` BIT NOT NULL,
PRIMARY KEY (`streamId`, `time`),
INDEX `Index_Time`(`time`)

)
ENGINE = MyISAM;

